KTN's online platform helps you to make the connections you need


The Knowledge Transfer Network (KTN) has refreshed its online platform to intelligently connect you to relevant events, funding, thought pieces and specialist staff to help your business innovate and grow.

You can discover content using your area of interest, from Materials to transport; from space to health – all major UK economic sectors are covered. Once you have selected your interests, using our intelligent tagging system, we will then display rich and relevant content related to your area, often from surprising sources.

An example might be new satellite technology from the space sector that is applicable in the agri-food sector. KTN-UK.co.uk will help you form these unusual and valuable connections.

All content on the platform has been carefully curated by our team of innovation specialists – not by an automated algorithm – so you can be confident that KTN is connecting you to the most relevant cutting-edge information.


The move also marks a closer alignment with our main funder, Innovate UK , with the website branding making a clear visual link. Knowledge Transfer Network is Innovate UK's innovation network partner, and also works with other funders to provide innovation networking services and fulfil our mission to drive UK growth.

We link new ideas and opportunities with expertise, markets and finance through our network of businesses, universities, funders and investors. From agri-food to autonomous systems and from energy to design, KTN combines expertise in all sectors with the ability to cross boundaries. Connecting with KTN can lead to potential partners, horizon-expanding events and innovation insights relevant to your needs.

Visit our people pages to connect directly with expertise in your sector.

Visit the KTN refreshed online platfom here


« go back

Innovative Exeter research pioneers nanotechnology for gas sensing

A team of scientists from the University of Exeter have created a new type of device that could be used to develop cost-effective gas sensors.


The pioneering team, which includes two second year Exeter undergraduates, have created a new type of device that emits light in the infrared part of the spectrum. Many important gases strongly absorb infrared light and this characteristic absorption can be used as a way of sensing them.

However, most existing infrared gas sensors use conventional “light-bulb” incandescent sources of infrared light, which have a number of considerable shortcomings including limited lifetimes due to the fragility of the filament. The new sensors could be used for a diverse range of applications including the sensing of atmospheric pollutants such as nitrogen dioxide, which is emitted from car exhausts and which can have a significant effect on public health.

The Exeter team used a sandwich of different 2D materials, which are only a few atoms thick, to create a device that is similar to a nanoscale light-bulb, but where the filament is extremely hard to break. In addition, the team believe that these devices could ultimately be more cost effective and sustainable to manufacture than semiconductor based light emitting diodes emitting at these long wavelengths.

The research, which is led by Professor Geoff Nash, is published in the highly-respected scientific journal Applied Physics Letters.

The team included undergraduate students Hannah Barnard and Katya Zossimova, who began working as part of Professor Nash’s group last summer whilst in their first year.

Professor Nash, Professor of Engineering Physics and Director of Natural Sciences, from the University of Exeter, said: “Previous devices we’ve made really only operated in vacuum and would break very quickly when exposed to air. By encapsulating the nanoscale filament in a protective coating, we have shown that these devices can operate in air for well over 1000 hours, paving the way for the development of practical infrared sources that could be used in sensor applications.”

Commenting on the makeup of his research team, he went on to add that “It’s a privilege to work alongside our some of our fantastic students, who have brought energy, enthusiasm and a different perspective to our research. Hannah and Katya, and other undergraduates before, have made a real impact to the work of my group.”

Katya, who is studying Physics, said: “It's been really exciting to be part of the research team, everyone has been really welcoming and I have learned a lot from the experience. I feel that this opportunity has given me the confidence to consider postgraduate studies in Physics.”

Hannah, who is studying Natural Sciences, said that the experience gave her “invaluable insight into being a research scientist within the University.” She added: “Since taking part in the internship I have achieved things I never even thought were possible and pushed all of my personal boundaries. I have loved being able to apply what I learn in the labs to my taught modules and vice versa.”

Natural Sciences at Exeter is an innovative flagship programme designed to explore the scientific concepts needed to explain the natural world, from the nanoscale to the complex systems of the Earth’s climate and our solar system.

Research-inspired, inquiry-led learning is the cornerstone of the University’s Education Strategy and undergraduates are engaged in the world-leading research at the University in many different ways.

Professor Tim Quine, Deputy Vice-Chancellor (Education), commented that “the synergies between education and research are vital in the approach the University takes to the discovery and dissemination of knowledge. The work of Hannah and Katya, supported by Professor Nash, is a perfect example of the great relationships between our students and academics”.

The research was undertaken as part of an UK Engineering and Physical Sciences Research Council Fellowship, held by Professor Nash, in Frontier Manufacturing.


Reproduced from original source:

Innovative Exeter research pioneers nanotechnology for gas sensing

Image courtesy:

University of Exeter

No comments yet. Be the first.

Featured events

There are no results.