KTN's online platform helps you to make the connections you need

 

The Knowledge Transfer Network (KTN) has refreshed its online platform to intelligently connect you to relevant events, funding, thought pieces and specialist staff to help your business innovate and grow.

You can discover content using your area of interest, from Materials to transport; from space to health – all major UK economic sectors are covered. Once you have selected your interests, using our intelligent tagging system, we will then display rich and relevant content related to your area, often from surprising sources.

An example might be new satellite technology from the space sector that is applicable in the agri-food sector. KTN-UK.co.uk will help you form these unusual and valuable connections.

All content on the platform has been carefully curated by our team of innovation specialists – not by an automated algorithm – so you can be confident that KTN is connecting you to the most relevant cutting-edge information.

 

The move also marks a closer alignment with our main funder, Innovate UK , with the website branding making a clear visual link. Knowledge Transfer Network is Innovate UK's innovation network partner, and also works with other funders to provide innovation networking services and fulfil our mission to drive UK growth.

We link new ideas and opportunities with expertise, markets and finance through our network of businesses, universities, funders and investors. From agri-food to autonomous systems and from energy to design, KTN combines expertise in all sectors with the ability to cross boundaries. Connecting with KTN can lead to potential partners, horizon-expanding events and innovation insights relevant to your needs.

Visit our people pages to connect directly with expertise in your sector.

Visit the KTN refreshed online platfom here

Articles

« go back

Cooling graphene-based film close to pilot-scale production

Heat dissipation in electronics and optoelectronics is a severe bottleneck in the further development of systems in these fields.
 
To come to grips with this serious issue, researchers at Chalmers University of Technology have developed an efficient way of cooling electronics by using functionalized graphene nanoflakes. The results will be published in the renowned journal Nature Communications.
 
"Essentially, we have found a golden key with which to achieve efficient heat transport in electronics and other power devices by using graphene nanoflake-based film. This can open up potential uses of this kind of film in broad areas, and we are getting closer to pilot-scale production based on this discovery," says Johan Liu, Professor of Electronics Production at Chalmers University of Technology in Sweden.
 
The researchers studied the heat transfer enhancement of the film with different functionalized amino-based and azide-based silane molecules, and found that the heat transfer efficiency of the film can be improved by over 76 percent by introducing functionalization molecules, compared to a reference system without the functional layer. This is mainly because the contact resistance was drastically reduced by introducing the functionalization molecules.
 
Meanwhile, molecular dynamic simulations and ab initio calculations reveal that the functional layer constrains the cross-plane scattering of low-frequency phonons, which in turn enhances in-plane heat-conduction of the bonded film by recovering the long flexural phonon lifetime. The results suggested potential thermal management solutions for electronic devices.
 
In the research, scientists studied a number of molecules that were immobilized at the interfaces and at the edge of graphene nanoflake-based sheets forming covalent bonds. They also probed interface thermal resistance by using a photo-thermal reflectance measurement technique to demonstrate an improved thermal coupling due to functionalization.
 
"This is the first time that such systematic research has been done. The present work is much more extensive than previously published results from several involved partners, and it covers more functionalization molecules and also more extensive direct evidence of the thermal contact resistance measurement," says Johan Liu.
 
 
 
Reproduced from source
 
Further information
For further reading about previous research:
 
 
 
Comments
No comments yet. Be the first.

Featured events

There are no results.