Articles

« go back

Genome sequence of wild rice reveals mechanisms underlying Oryza genome evolution

Researchers from Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, BGI-Shenzhen, and University of Arizona have completed the genome sequencing of wild rice Oryza brachyantha. This work provides new insights for researchers to understand the function and evolution of Oryza genomes.

The genus Oryza is an idea model system for studying plant comparative genomics, evolutionary biology and functional biology. There are two cultivated rice and more than twenty wild rice species. Among them, the wild relatives can provide invaluable genomic resources for rice improvement. As the most diverged wild relative of O. sativa (rice), O. Brachyantha has resistance against many rice pathogens and various stress environments. It was also proved to have the most compact genome in the genus Oryza, suggesting the genome may not experience many changes after the divergence of Oryza species.

In this study, researchers generated a high-quality reference genome sequence of O. brachyantha (~261Mb), and 96% genome sequences are anchored on 12 chromosomes based upon BAC-based physical map. After the comprehensive analysis, they found that the compact genome of O. brachyantha was caused by the silencing of LTR (Long terminal Repeats) retrotransposons and massive internal deletions of ancient elements.

Compared with the rice genome, the team found that many gene families were expanded in rice, where tandem duplications and gene movements mediated by double-strand break repair are responsible for the amplification of these genes. Researchers also observed that segmental and tandem duplications, further expanded by transposable element insertions, contributed to transition from euchromatin to heterochromatin in the rice genome, reflecting the dynamic nature of the Oryza genomes.

Quanfei Huang, Project Manager from BGI, said “This work revealed many important genomic mechanisms underlying Oryza genome, such as the genome size variation, gene movement and transition of euchromatin to heterochromatin. In the near future, I believe there will be more genomes of Oryza species to be cracked, enabling the genus Oryza be an unparalleled system for functional and evolutionary studies in plants.”

 

Story source: BGI News Release, 13 Mar 2013

Journal Reference: Jinfeng Chen et al. Whole-genome sequencing of Oryza brachyantha reveals mechanisms underlying Oryza genome evolution. Nature Communications, 2013; 4: 1595 DOI: 10.1038/ncomms2596

 

 

Comments
No comments yet. Be the first.

Subscribe to our updates

Subscribe to our newsletters
Follow us on twitter

Join us on LinkedIn

Keep up to date with the latest agri-food and biosciences news, events, funding opportunities and more.

Got a Question?

 

Email us Email Us
Contact a member of our team