MAchine Guided Energy Efficient Compilation

Experience of TSB Feasibility Funding

Dr Jeremy Bennett, CEO Embecosm
Do Compilers Affect Energy?

- Initial research in 2012 by Embecosm and Bristol University
- The answer is “yes”
- Now published open access in a peer-reviewed journal

Identifying Compiler Options to Minimize Energy Consumption for Embedded Platforms
James Pallister; Simon J. Hollis; Jeremy Bennett
Recap: What is MAGEEC?

Today we optimize for speed or space

What if we could optimize for energy usage?
Recap: How We Got Here

Research into feedback directed optimization

Research into modeling energy usage

Energy measurement
Recap: What's New?

Objective is energy optimization

Energy measured *not* modeled

Generic framework: GCC and LLVM initially

Working system, not research prototype
A Free and Open Source Energy Measurement System

mageec.org/wiki/Power_Sensing_Board
The **Bristol/Embecosm Embedded Benchmark Suite**
- a free and open source benchmark suite for embedded use

Underlying principles
- GPL licensed
- no I/O
- avoid library calls

BEEBS 2.0 scheduled for release 31 August 2014
- target 100
- some data variants of the same test
// Machine guided
class EnergyEfficientCompilation {
public:
 Machine
~Machine()
void Train (EC::FeatureSet noisy)
void Predict (EC::FeatureSet<>
bool choose (std::string);
private:
 MagicWand Mage;
Results for AVR ATmega328PU

<table>
<thead>
<tr>
<th></th>
<th>Standard GCC -O0</th>
<th>MAGEEC GCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>29.8 mJ</td>
<td>27.6 mJ</td>
</tr>
<tr>
<td>Time</td>
<td>329.1 ms</td>
<td>309.8 ms</td>
</tr>
<tr>
<td>Power</td>
<td>90.6 mW</td>
<td>89.1 mW</td>
</tr>
<tr>
<td>Average current</td>
<td>17.9 mA</td>
<td>17.6 mA</td>
</tr>
<tr>
<td>Average voltage</td>
<td>5.1 V</td>
<td>5.1 V</td>
</tr>
</tbody>
</table>

- Based on minimal training:
 - just 10 single function programs
 - 700 training runs
Where Can I Get It?

- **Project Website:** http://mageec.org

- **MAGEEC Source:** http://github.com/mageec/mageec

- **BEEBS:** http://github.com/mageec/beebs

- **Mailing List:** mageec@mageec.org

- **IRC:** #mageec on Freenode
TSB Funding
Experience of a TSB Feasibility Study

- £150 project, Embecosm (70%) and Bristol University (30%)
- Application took 6 days work from Embecosm to prepare
 - similar effort from Bristol University
- Process was reasonably quick
 - apply November 2012
 - conditional offer Feb 2013
 - grant confirmation April 2013
 - project start June 2013
- Clear and supportive quarterly review process
 - prompt payment of grant following review
£150k project, split 70% Embecosm, 30% Bristol University
- Bristol 100% funded, Embecosm 75%
- With 27.5% R&D tax credit, direct cost to Embecosm is £19k

Remember the hidden costs
- opportunity cost of application (£8.5k)
- management and audit (£8.5k)
- lost R&D tax credit (£21.7k)
- but at 75% funding, the initiative was still very worthwhile

In summary:
- make sure you consider all the costs
- for a project you want to do, but unfunded is too risky
Some Things That We Learned

- Reviewers comments can be contradictory
 - they are technical, but generalists
 - but they may hold opinions on your field
 - a “viva” part of the review could help this

- Working completely open source was very effective
 - gained a great deal of publicity very early
 - TSB templates aren't ideal for this, but can be adapted

- Using undergraduates is good value
 - 1 x summer postdoc = 3 x undergraduate summer interns
 - undergraduates incredibly motivated
 - excellent PhD preparation
// Machine guided
class EnergyEfficientCompilation {
public:
 Machine
~Machine()
readTrain(MageEC::FeatureSet, EnergyResult);
 void Predict(MageEC::FeatureSet<>);
 bool chooseSensor(std::string);
private:
 MagicWand MageWandEnergy;
};

Thank you
mageec.org
www.embecosm.com
cs.bris.ac.uk