“...to our surprise, [at first] there was very little speed improvement when using available library algorithms. Asad analysed the problem and implemented his own solution, coded in CUDA, and achieved a 10-fold increase in execution speed. Great result.”

Jürgen Gaiser-Porter, Willis Re
Technical summary

The very nature of the problem exhibits a large amount of data parallelism; that is it may be divided into several sub problems, which can be solved independently, making GPUs ideal candidates to solve the problem.

In 2007 NVIDIA released CUDA (Compute Unified Device Architecture). This is a low level programming language similar to C used to program general purpose graphics processors (GPGPUs), much like C/C++ are used to program CPUs. GPGPUs however have a completely different design philosophy. They were designed to compute thousands of similar calculations for each pixel on the screen. Through CUDA GPU's can be used to solve more generic problems.

To solve the problem at hand three prototypes were created:

- **RROptimiser1:** In order to monitor the possible performance benefits of CUDA it was natural to start with a benchmark. This was created as a multithreaded C++ application utilising the BOOST and ATLAS libraries.

- **RROptimiser2:** Although CUDA is a low-level language used to program GPGPUs, several high-level libraries such as THRUST and CUBLAS have been written to access the functionality of the GPGPU without the need to write low-level code. From a maintenance point of view it seemed logical to exploit the power of these libraries next. Unfortunately, although these libraries are good at solving one large problem in parallel, they are not designed to solve several small problems in parallel, which was the motivation of the next prototype.

- **RROptimiser3:** An application written in CUDA and C++. This program computes several (approximately 4000) reinsurance result vectors in parallel, making it superior to the previous approaches. The high-level libraries mentioned above do not accommodate this approach.

The fastest of the three was RROptimiser3 which was 20 times faster than the multithreaded, CPU optimised code.

“This project proved to be a great CUDA exercise, a tool that I no doubt will need in my further research. CUDA has opened a whole new world of scientific computation for me.”

Asad Munir
King’s College London

“This project highlighted the strong potential of GPUs for accelerating compute-intensive search methods for optimization. It has given me the confidence to explore GPU implementations of related problems in asset allocation, and was a good example of King’s College collaborating with its neighbours in the financial industry. Asad Munir did a great job.”

William Shaw
King’s College London

This project was part of the programme of industrial mathematics internships managed by the Knowledge Transfer Network (KTN) for Industrial Mathematics. The KTN works to exploit mathematics as an engine for innovation. It is supported by the Technology Strategy Board, in its role as the UK's national innovation agency, and the Engineering and Physical Sciences Research Council, in its role as the main UK government agency for funding research and training in engineering and the physical sciences.

Project Details

Partners
Willis Re
King’s College London

Project investment
£10,000

Intern
Asad Munir

For further details on the technology:
Jürgen Gaiser-Porter
Willis Re
gaiserporterj@willis.com

For further information on internships and other collaborations:
Lorcán Mac Manus
Industrial Mathematics KTN
lbmm@industrialmaths.net
+44 (0) 1483 565252